Math 115
Fall 2018
Lecture 19

$$
\begin{aligned}
& 3 a^{2}+b^{2}=c^{2} ? \\
& y=m x+\frac{?}{b} d=r t
\end{aligned}
$$

use $(A+B)^{2}=A^{2}+2 A B+B^{2}$ to find

1) $(2 x+7)^{2}=(2 x)^{2}+2(2 x)(7)+(7)^{2}$

$$
=4 x^{2}+28 x+49{ }^{\text {Trinomial }} D=2, L . C=4
$$

cost $=49$
2) $\left(x^{4}+3 x^{2}\right)^{2}=\left(x^{4}\right)^{2}+2\left(x^{4}\right)\left(3 x^{2}\right)+\left(3 x^{2}\right)^{2}$

$$
=x^{8}+6 x^{6}+9 x^{4} \text { Trinomial } \begin{gathered}
\text { D }=8, \text { L.C. }=1
\end{gathered}
$$

No constant
3) $\left(x^{5}+2 y^{3}\right)^{2}=\left(x^{5}\right)^{2}+2\left(x^{5}\right)\left(2 y^{3}\right)+\left(2 y^{3}\right)^{2}$

$$
=x^{10}+4 x^{5} y^{3}+4 y^{6} l_{\begin{array}{l}
\text { Trinomial } \\
\text { No, L.C. }=1 \\
\text { No constant }
\end{array}}^{\substack{1}}
$$

use $(A-B)^{2}=A^{2}-2 A B+B^{2}$ to find

$$
\begin{aligned}
& \text { 1) } \begin{aligned}
(x-8)^{2} & =(x)^{2}-2(x)(8)+(8)^{2} \\
= & x^{2}-16 x+64 \quad \begin{array}{l}
\text { Trinomial } \\
D=2, \text { L.C. }=1 \\
\text { Const }=64
\end{array} \\
\text { 2) }\left(4 x^{3}-5 x\right)^{2} & =\left(4 x^{3}\right)^{2}-2\left(4 x^{3}\right)(5 x)+(5 x)^{2} \\
& =16 x^{6}-40 x^{4}+25 x^{2}
\end{aligned}
\end{aligned}
$$

3) $\left(10 x^{6}-3 y^{3}\right)^{2}$

Trinomial, $D=6$, L.C. $=16$ No constant

$$
\begin{aligned}
& =\left(10 x^{6}\right)^{2}-2\left(10 x^{6}\right)\left(3 y^{3}\right)+\left(3 y^{3}\right)^{2} \\
& =100 x^{12}-60 x^{6} y^{3}+9 y^{6} \\
& D=12 \quad \begin{array}{ll}
D=12 \quad & D=6+3=9 \quad D=6 \\
C=100 & C=-60 \quad C=9
\end{array}
\end{aligned}
$$

use $\frac{(A+B)(A-B)}{\text { Conjugates }}=\underbrace{A^{2}-B^{2}}_{\text {Difference of two }}$ to find
(1)

$$
\begin{aligned}
& \text { (1) }(x+5)(x-5) \quad \begin{array}{l}
\text { Squares. } \\
=(x)^{2}-(5)^{2}=x^{2}-25 \\
\begin{array}{l}
\text { Binomial } \\
D=2, \text { L.C. }=1, \\
\text { Const. }=-25
\end{array} \\
\text { (2) }\left(3 x^{2}+7\right)\left(3 x^{2}-7\right) \\
=\left(3 x^{2}\right)^{2}-(7)^{2}=9 x^{4}-49
\end{array} \begin{array}{l}
\text { Binomial } \\
D=4, \text { L.C. }=9 \\
\text { Const. }=-49
\end{array} \\
& \text { (3) }\left(9 x^{6}-8 x^{3}\right)\left(9 x^{6}+8 x^{3}\right) \\
& =\left(9 x^{6}\right)^{2}-\left(8 x^{3}\right)^{2} \\
& =81 x^{12}-64 x^{6} \quad \begin{array}{l}
\text { Binomial, D=12, L.C. }=81
\end{array} \\
& \text { NO Constant. }
\end{aligned}
$$

Division by monomial:

$$
\begin{aligned}
& \frac{24 x^{5}-16 x^{3}+8 x^{2}}{4 x} \\
&=\frac{24 x^{5}}{4 x}-\frac{16 x^{3}}{4 x}+\frac{{ }^{2} x^{2}}{4 x}= 6 x^{5-1}-x^{3-1}+2 x^{2-1} \\
&= 6 x^{4}-x^{2}+2 x^{1} \\
&=6 x^{4}-x^{2}+2 x
\end{aligned}
$$

Divide \& Simplify
(1)
(2) $\frac{50 x^{7} y^{3}+25 x^{5} y^{2}-5 x^{2} y}{-5 x^{2} y}$

$$
=\frac{50 x^{7} y^{3}}{-5 x^{2} y}+\frac{25 x^{2} y}{-5 x^{2} y}-\frac{5 x^{2} y}{-5 x^{2} y}
$$

$$
\begin{array}{ccc}
=-10 x^{5} y^{2} & -5 x^{3} y+1 \\
D=5+2=7 & D=3+1=4 & \text { Constant } \\
C=-10 & C=-5 & D=0
\end{array}
$$

Trinomial
$D=7$ LC. $=-10$

$$
\begin{aligned}
& 49 x^{8}-14 x^{5} \quad 49 x^{8} \quad 14 x^{5} \quad \text { Binomial } \\
& D=5 \text {, } \\
& =-7 x^{8-3}+2 x^{5-3}=-7 x^{5}+2 x^{2}
\end{aligned}
$$

Divide using long division:

$$
\begin{aligned}
& \frac{2 x^{2}-5 x+3}{x-2} \\
& x 2 x=2 x^{2} \\
& x - 2 \longdiv { 2 x ^ { 2 } - 5 x + 3 } \\
& x-1=-x \\
& \frac{-\left(2 x^{2}-4 x\right)}{-x+3} \\
& -(-x+2) \\
& 2 x-1+\frac{1}{x-2} \text { Remainder } \rightarrow 1
\end{aligned}
$$

Divide by long division:

$$
\begin{aligned}
& \frac{2 x^{3}-5 x^{2}+7 x-3}{x+1} \frac{2 x^{2}-7 x+14}{x + 1 \longdiv { 2 x ^ { 3 } - 5 x ^ { 2 } + 7 x - 3 }} \\
& x-2 x^{2}=2 x^{3} \quad-\frac{\left(2 x^{3}+2 x^{2}+t\right)}{-7 x^{2}+7 x-3} \\
& x-7 x=-7 x^{2} \\
& x 114=14 x \\
& \frac{-\left(-7 x^{2}-7 x-1\right.}{14 x-3} \\
& -(14 x+14) \\
& \text { Rem. } \rightarrow-17
\end{aligned}
$$

Divide using long division

$$
\begin{aligned}
& \frac{4 x^{3}-5 x+1}{x-1} \\
& x - 1 \longdiv { 4 x ^ { 2 } + 4 x - 1 } \\
& x \quad 4 x^{2}=4 x^{3} \\
& x 4 x=4 x^{2} \\
& x-1=-x \\
& -\frac{\left(4 x^{3}-4 x^{2} d \quad d\right)}{4 x^{2}-5 x+1} \\
& \frac{-\left(4 x^{2}-4 x\right)}{-x+1} \\
& 4 x^{2}+4 x-1 \\
& \operatorname{Rem} \xrightarrow[\rightarrow 0]{-(-x+1)}
\end{aligned}
$$

Simplify:

$$
\begin{aligned}
& \text { (1) }\left(-5 x^{4} y^{3}\right)^{3} \\
& =(-5)^{3}\left(x^{4}\right)^{3}\left(y^{3}\right)^{3} \\
& =-125 x^{12} y^{9} \quad \text { Monomial } \quad D=21, C=-125=\frac{2^{4}\left(x^{6}\right)^{4}}{3^{4}\left(y^{5}\right)^{4}} \\
& \text { (3) }(5 x-3)\left(25 x^{2}+15 x^{0}+9\right) \\
& =125 x^{3}+75 x^{2}+45 x \\
& =\frac{16 x^{24}}{81 y^{20}} \\
& \text { Nota } \\
& -75 x^{2}-45 x-27 \\
& \text { Monomial } \\
& =125 x^{3}-27 \quad \begin{array}{l}
\text { Binomal } \\
D=3, L C=125, \text { Const }=-27
\end{array} \\
& \text { It is a } \\
& \text { term. }
\end{aligned}
$$

Simplify

$$
\begin{aligned}
& \text { (1) }\left(2.5 \times 10^{18}\right)\left(4.1 \times 10^{11}\right) \\
& =\left(10.25 \times 10^{29}=1.025 \times 10^{1} \times 10^{29}\right. \\
& \quad \text { has to be } 1 \ll 10
\end{aligned}
$$

(2)

$$
\frac{3.5 \times 10^{-12}}{1.75 \times 10^{7}}
$$

$$
=2 \times 10^{-12-7}=2 \times 10^{-19}
$$

Simplify

$$
\begin{aligned}
\left(\frac{1.2}{L} \times 10^{-23}\right) \cdot\left(\frac{4}{3} \times 10^{-17}\right) & =4.8 \times 10^{-23+(-17)} \\
& =4.8 \times 10^{-40}
\end{aligned}
$$

$$
\frac{1.25 \times 10^{15}}{5} \times 10^{-10}=.25 \times 10^{15-(-10)}
$$

$$
=.25 \times 10^{\circ}
$$

It has to be $1 \ll 10=2.5 \times 10^{-1} \times 10^{25}$

$$
=2.5 \times 10^{24}
$$

Divide

$$
\begin{aligned}
& \frac{5 x+4 x^{3}-8-4 x^{2}}{-1+2 x} \\
& =\frac{4 x^{3}-4 x^{2}+5 x-8}{2 x-1} \\
& \begin{array}{r}
\left.2 x-1 \begin{array}{|cc|}
\hline 4 x^{3}-4 x^{2}+5 x & -8 \\
-\frac{\left(4 x^{3}-2 x^{2}+2\right.}{-2 x^{2}+5 x-8} & + \\
\hline
\end{array}\right)
\end{array} \\
& 2 x--x=-2 x^{2} \\
& 2 x-2=4 x
\end{aligned}
$$

Nov 26-8:15 AM

Divide:

$$
\begin{aligned}
& \frac{3-x-10 x^{2}+8 x^{3}}{2 x+1} \\
& 2 x 4 x^{2}=8 x^{3} \\
& 2 x-7 x=-14 x^{2} \\
& \frac{-\left(8 x^{3}+4 x^{2} d \quad d\right)}{-14 x^{2}-x+3} \\
& \frac{-\left(-14 x^{2}-7 x d\right)}{6 x+3} \\
& 2 x=3=6 x \\
& -\frac{(6 x+3)}{0} \\
& 4 x^{2}-7 x+3
\end{aligned}
$$

Divide

Nov 26-8:27 AM

39 Coins total
Total value $\$ 7.50$
Quarters Σ_{1} Dimes only.

$$
\begin{aligned}
& \text { How many of each? } \\
& \text { use system of linear } \div\left\{\begin{array}{l}
x+y=39 \\
10 x+25 y=750
\end{array}\right. \\
& \text { equations. } \\
& \frac{2}{10 x+2 y=-78} \begin{array}{l}
-2 x-2 y=39 \\
2 x+5 y=150 \\
2 x+5 y=150
\end{array} \\
& \begin{array}{l}
-72
\end{array} \rightarrow y=24\left\{\begin{array}{c}
24 \text { Quarters } \\
15 \\
\text { Dimes }
\end{array}\right.
\end{aligned}
$$

$x \rightarrow$ Dimes
$y \rightarrow$ Quarters

56 Stamps.
Total cost \$19.44.
$x \rightarrow \#$ of $39 \&$ stamps $y \rightarrow \#$ of $24 \&$ stamps
Some $39 \downarrow$ each,
some $24 \$$ each.
No other type.
How many of each? $\div 3\left\{\begin{array}{c}39 x+24 y=1944 \\ 7\end{array}\right.$

$$
-8\left\{\begin{array}{l}
x+y=56 \\
13 x+8 y=648
\end{array}\right.
$$

Divisible by 3

$$
\begin{aligned}
-8 x-8 y & =-448 \\
13 x+8 y & =648 \\
5 x & =200
\end{aligned}
$$

40 stamps at $39 \$$ each

$$
x=40
$$

Nov 26-8:40 AM
we need 120 liters of
50% alcohol Sole.
we have unlimited supply of 40% غ 70% Solutions.
How many liters of each?

$$
\begin{aligned}
& -4\left\{\begin{array}{l}
x+y=120 \\
4 x+7 y=600 \\
\frac{\left\{\begin{array}{l}
-4 x-4 y \\
4 x+7 y \\
4 x
\end{array}\right)=600}{3 y}=120
\end{array}\right.
\end{aligned}
$$

$$
=\left\{\begin{array}{l}
x+y=120 \\
50 \% \\
120 \\
=100 \begin{array}{l}
x+70 \% y=50 \% .120 \\
40 x+y=120 \\
40 x+70 y=50(120)
\end{array}
\end{array}\right.
$$

$$
\begin{aligned}
& \text { we need } 45 \mathrm{lb} \text {. of } \\
& \$ 1.40 / 1 \mathrm{~b} \text {. of CandY. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { How many pounds of } \\
& \text { How many bonds } \quad\left\{\begin{array}{l}
x+y=45 \\
\text { each? } \\
1.20 x+1.80 y=1.40(45)
\end{array}\right. \\
& \left\{\begin{array} { l }
{ x + y = 4 5 } \\
{ 1 . 2 x + 1 . 8 y = 1 . 4 (4 5) }
\end{array} \Rightarrow \left\{\begin{array}{l}
x+y=45 \\
\begin{array}{l}
12 x+18 y=14(45) \\
\text { invisible by } 6
\end{array} \\
\text { Davis. }
\end{array}\right.\right. \\
& -2\left\{\begin{array} { r l }
{ x + y } & { = 4 5 } \\
{ 2 x + 3 y } & { = 1 0 5 }
\end{array} \Rightarrow \left\{\begin{array}{l}
-2 x-2 y=-90 \\
2 x+3 y=105
\end{array}\right.\right. \\
& 15 \mathrm{lb} \text {. of } \$ 1.80 \text { Candy } \\
& 30 \mathrm{lb} \text {. of } \$ 1.20 \text { Candy }
\end{aligned}
$$

Exam III: Next Thursday
Final. Exam: Dec. 13 th
we have lectures during final week work on SG 12,13, and 14 .

